Journal

Student advisees identified by an asterisk (*)

  1. S. Y. Lee*, D. L. West*, S. A. Dasari*, and N. Ghalichechian, “On-Chip Miniaturized Cavity V-Band Coplanar Folded Slot Array With High Efficiency and Reduced Mutual Coupling,” in IEEE Transactions on Antennas and Propagation, vol. 72, no. 9, pp. 7317-7322, Sept. 2024, doi: 10.1109/TAP.2024.3424554. (PDF).
  2. D. L. West*, A. A. Goodnight*, and N. Ghalichechian, “Ultrawideband, Photothermally Excited mmWave Vanadium Dioxide Switches,” in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 9, pp. 1083-1086, Sept. 2024, doi: 10.1109/LMWT.2024.3422848. (PDF).

  3. J. A. Ramsey*, S. Y. Lee*, W. R. Disharoon*, D. L. West*, and N. Ghalichechian, “Low-loss vanadium dioxide-enabled mmWave tunable reflective electromagnetic surface with complementary unit cells for wave manipulation,” Journal of Applied Physics, vol. 135, no. 21, p. 214901, 2024, doi: 10.1063/5.0211712. (PDF).

  4. M. S. Lust*, D. L. West*, V. Smet, T. G. Williamson*, and N. Ghalichechian, “Vanadium-Dioxide-Based Reconfigurable Ka-Band Dual-Sense Linear-to-Circular Polarizer,” in IEEE Transactions on Antennas and Propagation, vol. 72, no. 3, pp. 2468-2480, March 2024, doi: 10.1109/TAP.2024.3356615. (PDF).

  5. M. Lust*, I. Vitebskiy, I. Anisimov, and N. Ghalichechian, “Thermo-optic VO2-based silicon waveguide mid-infrared router with asymmetric activation thresholds and large bi-stability,” Optics Express, vol. 31, no. 14, pp. 23260-23273, 2023/07/03 2023, doi: 10.1364/OE.493895. (PDF)

  6. S. Chen*, M. Lust*, A. Roo* and N. Ghalichechian, “Reliability of VO2-based mmWave Switches Under 100 Million Thermal Cycles,” IEEE Transactions on Device and Materials Reliability, vol. 23, no. 2, pp. 241-248, June 2023, doi: 10.1109/TDMR.2023.3249771. (PDF)
  7. K. Q. Henderson*, W. Disharoon* and N. Ghalichechian, “Towards High Power Beam Steerable Reflectarrays Using Tunable Height Dielectric,” in IEEE Transactions on Antennas and Propagation,  vol. 71, no. 3, pp. 2487-2496, March 2023, doi: 10.1109/TAP.2023.3238671. (PDF)

  8. S. Chen*, M. Lust* and N. Ghalichechian, “Antenna-Coupled Microbolometer Based on VO2’s Non-linear Properties Across the Metal-Insulator Transition Region”, Applied Physics Letters, vol. 121, no. 20, pp. 201901, 2022, doi: 10.1063/5.0123779 (PDF)

  9. S. Wu, J. Eichenberger*, J. Dai, Y. Chang, N. Ghalichechian and R. R. Zhao, “Magnetically Reconfigurable Metamaterial as Conformal Electromagnetic Filters”, Advanced Intelligent Systems, 2022, doi: 10.1002/aisy.202200106. (PDF)

  10. B. Ghassemiparvin* and N. Ghalichechian, “Paraffin-Based RF Microsystems for Millimeter-Wave Reconfigurable Antenna,” in IEEE Transactions on Antennas and Propagation, vol. 70, no. 1, pp. 744-749, Jan. 2022, doi: 10.1109/TAP.2021.3102112 (PDF)

  11. K. Q. Henderson* and N. Ghalichechian, “Triangular and Rectangular Lattices for Cosecant-Squared-Shaped Beam Reflectarrays,” in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 10, pp. 2058-2062, Oct. 2021, doi: 10.1109/LAWP.2021.3103152 (PDF)

  12. J. Eichenberger* and N. Ghalichechian, “Mechanically Reconfigurable Slot Array Using Accordion-Like Microactuators,” in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 10, pp. 2048-2052, Oct. 2021, doi: 10.1109/LAWP.2021.3102851 (PDF)

  13. J. Li*, C. Matos* and N. Ghalichechian, “A Low-cost Vertically-Integrated Antenna Array at 60 GHz with 85% Efficiency,” IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 4, pp. 513-517, April 2021, doi: 10.1109/LAWP.2021.3055726 (PDF)

  14. J. Li*, C. Matos*, S. Chen*, and N. Ghalichechian, “Fundamental Improvement to the Efficiency of On-chip mmWave Phased Arrays using MEMS Suspension”, IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 4, pp. 473-477, April 2021, doi: 10.1109/LAWP.2021.3054555 (PDF)

  15. C. Matos*, J. Humanchuk* and N. Ghalichechian “Robotically-controlled Antenna Measurement System for Millimeter-wave Applications”, Microwave and Optical Technology Letters, pp. 1520-1525, vol. 63, no. 5, May 2021, https://doi.org/10.1002/mop.32773  (PDF)

  16. S. Chen*, M. Lust*, and N. Ghalichechian, “Multiphysics simulation of Hypersensitive Microbolometer Sensor using Vanadium Dioxide and Air Suspension for Millimeter Wave Imaging”, Microsystem Technologies, vol. 27, pp. 2815-2822, 2021, https://doi.org/10.1007/s00542-020-05031-0 (PDF)

  17. B. Ghassemiparvin*, and N. Ghalichechian, “Paraffin-Based Reconfigurable Antenna Operating at 100 GHz”, IEEE Journal of Microelectromechanical Systems, vol. 29, no. 5, pp. 621-628, Oct. 2020, 10.1109/JMEMS.2020.3013159 (PDF)

  18. M. Lust*, S. Chen*, C. Wilson, J Argo, V. Doan-Nguyen, and N. Ghalichechian, “High-Contrast, Highly Textured VO2 Thin Films Integrated on Silicon Substrates Using Annealed Al2O3 Buffer Layers”, Journal of Applied Physics, 2020, https://doi.org/10.1063/1.5144816 (PDF)

  19. K. Q. Henderson* and N. Ghalichechian, “Circular-Polarized Metal-Only Reflectarray with Multi-Slot Elements,” IEEE Transactions on Antennas and Propagation, 68(9), pp. 6695-6703, 2020, doi: 10.1109/TAP.2020.2993229 (PDF)

  20. B. Ghassemiparvin*, and N. Ghalichechian, “Reconfigurable Antennas: Quantifying Payoffs for Pattern, Frequency, and Polarization Reconfiguration”, IET Microwaves, Antennas & Propagation, vol. 14, no. 3, pp. 149-153, 2020. https://doi.org/10.1049/iet-map.2019.0473 (PDF)

  21. K. H. Jeong* and N. Ghalichechian, 3D-Printed 4-Zone Ka-band Fresnel Lens: Design, Fabrication, and MeasurementIET Microwaves, Antennas & Propagation, Volume 14, Issue 1, pp. 28 – 35, January 2020 https://doi.org/10.1049/iet-map.2019.0117 (PDF)

  22. B. Ghassemiparvin*, and N. Ghalichechian, “Design, Fabrication, and Testing of a Helical Antenna using 3D Printing Technology”, Microwave and Optical Technology Letters,62(4), pp. 1577-1580, 2020. https://doi.org/10.1002/mop.32184 (PDF)

  23. K. Zhao*, J. A. Ramsey* and N. Ghalichechian, “Fully 3-D-Printed Frequency-Scanning Slotted Waveguide Array with Wideband Power-Divider,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 12, pp. 2756-2760, Dec. 2019, https://doi.org/10.1109/LAWP.2019.2951324 (PDF)

  24. S. Shah*, B. Ghassemiparvin*, and N. Ghalichechian, “Robust Spin Coating Deposition Process for Paraffin Phase-Change Films”, Microelectronic Engineering, Volume 217, 2019, https://doi.org/10.1016/j.mee.2019.111121 (PDF)

  25. J. Eichenberger*, E. Yetisir and N. Ghalichechian, “High-Gain Antipodal Vivaldi Antenna with Pseudoelement and Notched Tapered Slot Operating at (2.5 to 57) GHz,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 7, pp. 4357-4366, July 2019, 10.1109/TAP.2019.2906008 (PDF)

  26. E. Yetisir, J. Li* and N. Ghalichechian, “UWB dual-polarised dipole array with dielectric and FSS superstrate and 65° scanning,” IET Microwaves, Antennas & Propagation, vol. 13, no. 3, pp. 313-321, 2019, https://doi.org/10.1049/iet-map.2018.5626 (PDF)

  27. B. Ghassemiparvin* and N. Ghalichechian, “Complex Permittivity Measurement of Paraffin Phase-Change Material at 26 GHz-1.1 THz Using Time Domain Spectroscopy”, Journal of Infrared, Millimeter, and Terahertz Waves, 2018, https://doi.org/10.1007/s10762-018-0556-5 (PDF)

  28. E. Yetisir, N. Ghalichechian and J. L. Volakis, “Ultrawideband Array With 70° Scanning Using FSS Superstrate,” in IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4256-4265, Oct. 2016. 10.1109/TAP.2016.2594817 (PDF)

  29. V. Sanphuang; N. Ghalichechian; N. K. Nahar; J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” in IEEE Transactions on Terahertz Science and Technology, vol. 6, no.4, pp.583-591, 2016 10.1109/TTHZ.2016.2560175 (PDF)

  30. V. Sanphuang, N. Ghalichechian, N. Nahar, J. Volakis, “Equivalent Circuit for VO2 Phase Change Material Film in Reconfigurable Frequency Selective Surfaces,” Applied Physics Letters, vol. 107, p.253106, 2015, http://dx.doi.org/10.1063/1.4938468 (PDF)

  31. N. Ghalichechian and K. Sertel, “Permittivity and Loss Characterization of SU-8 Films for mmW and Terahertz Applications,” IEEE Antennas and Propagation Letters, vol.14, pp.723, 726, 2015, http://dx.doi.org/10.1109/LAWP.2014.2380813 (PDF)

  32. M. I. Beyaz, M. McCarthy, N. Ghalichechian, and R. Ghodssi, “Closed-loop control of a long-range micropositioner using integrated photodiode sensors,” Sensors and Actuators A, vol. 151, pp. 187-194, February 2009, http://dx.doi.org/10.1016/j.sna.2009.02.020 (PDF)

  33. N. Ghalichechian, A. Modafe, M.I. Beyaz, and R. Ghodssi, “Design, Fabrication, and Characterization of a Rotary Micromotor Supported on Microball Bearings,” IEEE Journal of Microelectromechanical Systems, vol. 17, no 3, pp. 632- 642, June 2008, http://dx.doi.org/10.1109/jmems.2008.916346 (PDF)

  34. N. Ghalichechian, A. Modafe, J. H. Lang, and R. Ghodssi, “Dynamic Characterization of a Linear Electrostatic Micromotor Supported on Microball Bearings,” Sensors and Actuators A, vol. 136 (2), pp. 416-503, May 2007, http://dx.doi.org/10.1016/j.sna.2006.08.019 (PDF)

  35. A. Modafe, N. Ghalichechian, A. Frey, J. H. Lang, and R. Ghodssi, “Microball-Bearing-Supported Electrostatic Micromachines with Polymer Dielectric Films for Electromechanical Power Conversion,” Journal of Micromechanics and Microengineering, vol. 16, pp. S182-S190, September 2006, http://dx.doi.org/10.1088/0960-1317/16/9/s03 (PDF)

  36. A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded Benzocyclobutene in Silicon (EBiS): An Integrated Fabrication Process for Electrical and Thermal Isolation in MEMS,” Microelectronic Engineering, 82, pp. 154, August 2005, http://dx.doi.org/10.1016/j.mee.2005.07.005 (PDF)

  37. N. Ghalichechian, A. Modafe, R. Ghodssi, P. Lazzeri, R. Micheli, and M. Anderle, “Integration of Benzocyclobutene Polymers and Silicon Micromachined Structures Using Anisotropic Wet Etching,” Journal of Vacuum Science and Technology (JVST) B, vol. 22, pp. 2439-2447, September 2004, http://dx.doi.org/10.1116/1.1787519 (PDF)

  38. A. Modafe, N. Ghalichechian, B. Kleber and R. Ghodssi, “Electrical Characterization of Benzocyclobutene Polymers for Electric Micromachines,” IEEE Transactions on Device and Materials Reliability, vol.4, pp. 495-508, September 2004, http://dx.doi.org/10.1109/tdmr.2004.830289 (PDF)