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Abstract—We report the design, fabrication, and measurements
of reconfigurable terahertz (THz) filters using vanadium dioxide
(VO,) phase-change material (PCM), which undergoes a transi-
tion between an insulator and metal phase at 68 °C (~341 K). The
filters are made of frequency selective surfaces (FSS) and heater
are integrated for VO, excitation. Two THz spatial filters are devel-
oped. A broadband on/off filter at 0.35 THz is demonstrated with
20 dB change in transmission between the on and off states. Then,
a reconfigurable stopband FSS filter with tunable rejection from
0.75 to 0.55 THz is presented. The latter shows a peak with rejec-
tion of more than 90%. The two states of both filters are achieved
at relatively low temperature of 68 °C, making them suitable for
practical applications. Comparisons between simulation and mea-
surement show excellent agreement for both 0.35 THz on/off filter
and 0.75 to 0.55 THz tunable filters.

Index Terms—Periodic structures, phase-change materials
(PCMs), reconfigurable, terahertz (THz) filter, vanadium dioxide
(VO3).

1. INTRODUCTION

ERAHERTZ (THz) bands are of interest due to their
T unique applications in imaging and sensing, material char-
acterization, space sciences, and short-range communications
[1]-[8]. However, lack of fabricable components in this fre-
quency range remains a challenge. Specifically, tunable filters
are highly desired with reconfiguration. These filters are used
to improve signal-to-noise ratio, block unwanted surrounding
power, and allow for better detection of the desired field.
In this paper, we consider phase-change materials (PCMs) as
a switching mechanism for the reconfigurable frequency selec-
tive surfaces (FSS) filter. PCMs refer to materials that exhibit the
transition from dielectrics to conductors driven by external ex-
citations, such as heat, electric field, optically injected charges,
external stress or pressure [9], [10]. Various PCMs have been
considered [9]-[13], corresponding to a wide range of tran-
sition temperatures. However, most of these PCMs [12] have
their transition temperatures significantly below room temper-
ature, implying that a cooling system is needed for triggering
the switch. For all practical purposes, we require PCMs where
a heater is employed.
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Among various PCMs, vanadium dioxide (VO-) is one such
material that undergoes a transition between an insulator and
metal phases at 68 °C (~341 K), which is closest to room
temperature. Importantly, PCM can be easily integrated into
microsystems. The latter property makes VO, PCMs attractive
for reconfigurable filters [14], [15]. Though there are several
studies of the reconfigurable applications using PCM [14]-[26],
none of them employs build-in temperature control [15]. In
this paper, an integrated heater is introduced to enable thermal
excitation of VOs in a practical manner. Reconfiguration is also
demonstrated achieving tunability for THz FSS filters with the
integrated heater. This controlled heater enhances the practical
realization of this type of filters.

In this paper, two types of THz spatial filters are examined: 1)
abroadband on/off filter; and 2) a frequency reconfigurable stop-
band filter. The integrated heater is designed to control the filter
temperature without affecting the performance of the filter. The
VOq thin-film process development is extensively discussed and
measurements are provided that verify the VOo performance in
both states.

II. DESIGNS

Several high-performance THz filters are commercially avail-
able. However, their frequency response is fixed and do not pro-
vide a tunable frequency selectivity. There is also interest in
achieving controllable bandpass and bandstop filter character-
istics. FSS, which are periodic, planar, and generally consist of
metallic elements on dielectric layers, is considered here as a
THz filter since it shows bandpass or bandstop characteristic
based on its geometry [8], [27]-[31]. To achieve the reconfig-
uration, VO» thin film is introduced within the FSS structure.
The film can be deposited onto a substrate or inserted as part of
the structure. The challenge is to minimize losses and optimize
overall filter performance by sharpening the roll-off response
curves of the FSS filter.

Here, we discuss two designs for reconfigurable THz filter by
using VO thin film to:

1) reconfigure THz filters as ON/OFF filter at specific center

frequency;

2) reconfigure THz filters as frequency shifting stopband

filter.

A. Broadband ON/OFF Filter Design

Since the element type (geometry), substrates, superstrate,
and interelement spacing play a significant role in the FSS’s
performance, the filter unit cell was carefully optimized. To
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Fig. 1. Unit cell geometry of the proposed on/off FSS filter operating at THz
frequencies. (a) Top view. (b) Side view. (c) Simulated transmission response.
(d) Comparison of VO3 to Cu at off stage.

allow for sufficient design flexibility, a cross-loop FSS is chosen
(shown in Fig. 1). For reconfiguration, VO, film is placed
between the substrate and metal patterns as depicted in Fig. 1(b).

The geometry of the unit cell is illustrated in Fig. 1(a) and
its dimensions were optimized using the full-wave simulation
(Ansys HFSS). The frequency of interest for this design is 0.35
THz that lies in the low absorption atmospheric window with
large available bandwidth [32]. The dimensions of this design
are: unit cell size W = 150 pum, cross length L = 140 pym, and
cross width G = 15 pm. Also, the substrate is a c-plane sapphire
of thickness (T'"H) = 150 pum. The goal is to exploit the con-
ductivity change of the VO, film from dielectric to conducting
state as a function of temperature. Specifically at above ~68 °C,
the VO, film becomes metallic and blocks the incoming wave.
Therefore, the filter acts as a reflector (off state). This filter
has two states (on/off) when the temperature is below/above
~68 °C. As shown in Fig. 1(a), 40 dB difference is achieved at

A

Y

i, |
&

\ TH

Sapphire I
Au

t

(a) (b)

= Below 68 °C

Transmission{dB)

- i i i i F i
Ns o= o6 065 07 075 08 0% 09
Frequency (THz)

v — 0,

-y

Bs o 06 065 07 07 08 0% 09
Frequency (THz)
(d)

Fig. 2. Unit cell geometry of the proposed frequency shifting FSS filter oper-
ating at THz frequencies. (a) Top view. (b) Side view. (c) Simulated transmission
response. (d) Comparison of VO3 to Cu at conductor phase.

0.35 THz. Full-wave simulations [see Fig. 1(c)] demonstrate the
concept. In Fig. 1(d), we have also compared the ohmic losses
of VO, in the conductor phase to Cu (conductivity = 5.8 x 10’
S/m) as the standard material. There is ~30 dB difference in
transmission at off stage between VO, and Cu as expected due
to lower conductivity of VO.

B. Frequency Reconfigurable Stopband Design

As the second design, we considered a reconfigurable THz
filter using a combination of VO, thin film and gold to form
the FSS structure (hybrid design). The unit cell is depicted in
Fig. 2 as a square loop with a gap at the left. One side of the
square FSS unit cell is constructed of VO, films and serves to
alter the filter’s response when the VO, transitions through its
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Fig. 3. Meander loop heater around the THz filter.

phases. The FSS was designed to operate between 0.5 to 0.9
THz. We note that the 0.6 and 0.8 THz frequency were chosen
which are typical for THz security imagers used in atmospheric
windows [33]. The dimension of the unit cell are: unit cell
size W = 50 pm, C-shape length L = 36 pm, C-shape width
G = 6 pm with the VO, leg of 10 pm x 6 pm. Again c-plane
sapphire of thickness (TH) = 430 pm was used as a substrate.

The design in Fig. 2 achieved a stopband rejection that shifted
from 0.8 to 0.6 THz when the VO, reached its metallic state
(temperature > 68 °C). The filter is suitable for cases when
large frequency shifting is required. Again, we compared the
ohmic losses of VO5 in conductor phase to Cu. There is a very
small difference in transmission (~2 dB) at the same frequency
peak. As it can be seen from Figs. 1(a) and 2(a), the on/off
filter structure has more metallization compared to the frequency
shifting filter. Thus, the higher metallization causes lesser ohmic
loss due to change in materials in unit cells.

C. Integrated Controlled Heater Design

Microheaters are well known in various microelectrome-
chanical (MEMS) devices and microfluidic applications to pro-
vide several functionalities, i.e., physical and chemical sensors,
pumping and chemical reactor [34]-[36]. In most of these de-
signs, the heater is placed underneath the structure. However,
for our unique application of the heater in spatial filters, it can-
not be placed underneath for performance purpose. To actuate
through the VO state, a heater is introduced at the periphery of
the FSS filter instead of underneath as shown in Fig. 3 [15].

The heater functions as resistive heating, which is the pro-
cess where the input energy from electric current is converted
into heat through resistive losses in the material. In designing
the heater, it is important to have low power consumption, low
thermal mass, fast transition, and temperature uniformity across
where the device is operated. In our application, the tempera-
ture uniformity across the VO, in every unit cell is the most
significant feature since we want to ensure that every unit cell
in the array get activated at the same time.

To do so, different geometries of heater are studied: circular,
square, and meander designs, were considered as shown in Fig
4. Multiphysics simulation tool (COMSOL) was used to study
heater topologies. Gold was deposited to form the heater circuit
with identical thickness as of the FSS pattern. This simplified
fabrication process was chosen since the same step can be used
for patterning the FSS structure. Again, 2” diameter c-plane
sapphire is used as the substrate. For heat control, different volt-
ages were appliedx to achieve uniform temperature across the
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Fig. 4. Temperature contour of integrated heater surface with (a) circular,
(b) square, and (c) meander designs.

0.8” x 0.8” center area of the design. We found that to achieve
temperature of 85 to 91°C, the applied voltages of 2.1, 2.05, and
5 V are required for each heater design, respectively. As shown
in Fig. 4, the circular and square heater designs are simpler
and require lower voltage. However, the meander heater design
provides more uniform temperature at the center since the geom-
etry of the design is symmetric. This structure reduces the device
area and help confining the heat at the center. Furthermore, the
power consumption of each design is studied. The resistance of
heater circuit of circular, square, and meander designs are 3.01,
2.93, and 18.45 ), respectively. Based on the applied voltage
mentioned above, the power consumption of each heater design
is calculated and obtained as 1.47, 1.44, and 1.35 W. As seen,
the meander design provides lower power consumption even
though it requires higher voltage. This is due to that the mean-
der design reduces the overall device area with higher resistance
of the heater compared to the other two designs. Hence, it was
adopted for reconfiguration of our device.

III. FABRICATION
A. VOs Thin-Film Development

Before fabricating the FSS filter, high quality VO, thin film
must be developed. Various VO, thin-film deposition techniques
have been previously reported. They include pulsed laser depo-
sition [37], sol-gel [38], RF reactive magnetron sputtering [39],
and dc reactive magnetron sputtering [40]. For this paper, we
employed dc reactive magnetron sputtering (AJA Orion) for
VO, deposition. This approach provides conformal and uni-
form films on large sample area in a relatively low-cost batch
process.

1) Deposition Process and Parametric Studies: The dc re-
active magnetron sputtering with 99.5% Vanadium (V) target
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Fig. 5. (a) Resistivity versus excitation temperature for different Ar/Os in-
jection ratio. (b) Resistivity versus excitation temperature for two deposition
temperatures at 550 and 650 °C.

is used to deposit on 2” c-plane (0001) sapphire substrate.
In this system, argon (Ar) is used as a carrier and oxygen
(O2) is injected as reactive gas to create the oxide. There are
several critical parameters in depositing VO,. Among them
are: power, pressure, Ar/Oy gas injection ratio, and deposition
temperature.

Several attempts were made to achieve successful growth
conditions. The Ar/O, injection ratio was studied and shown in
Fig. 5(a) by varying the percentage of Oy from 7% to 8.5%. It
was observed that there is a small window for optimizing the re-
sistivity ratio (i.e., ratio of resistivity below and above transition
temperature). The deposition was performed at various temper-
atures ranging from 500 to 650 °C. As shown in Fig. 5(b), the
deposition temperature impacts the resistivity ratio of the VO,
film. Specifically, deposition at 650 °C provides about 20 times
higher resistivity compared to 550 °C. This is important as we
require as large as possible resistivity change. Finally, we have
tuned the electrical and phase transition properties of our film
to achieve largest conductivity change at ~68 °C. The VO, thin
films have been grown with Ar/Oy gas flow of 92.5/7.5 sccm.
The deposition temperature is set to be 650 °C and the base

Fig. 6. Measurement setup (Inset: an example of VO3 thin film deposited on
a sapphire substrate) [20].
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Fig. 7. Hysteresis loop of our developed VO3 sample.

pressure before sputtering is controlled to be below 10~° Torr.
The pressure is kept constant at 10 mTorr throughout the depo-
sition. The final VO, film thickness is measured to be 80 nm
for all design work.

2) Resistivity Measurement Setup: For measurement setup,
the film is positioned on a hot plate and measurements are
carried out as the temperature is varied in 2—10 °C steps. The
overall resistivity measurement setup is shown in Fig. 6. A four-
point probe (Jandel RM3000) was used to measure the sheet
resistance of the film at dc. Then, the thickness of the film was
measured using a Dektek profilometer. Finally, the resistivity
of VO, versus temperature is determined from sheet resistance
and thickness measurements.

3) Optimized VOq Thin-Film Resistivity: The resistivity ra-
tio of our optimized VO, filmis 7 x 10* times. This difference
is observed as the temperature changes from 60 to 80 °C. As de-
picted in Fig. 7, our film shows low hysteresis of 3% during the
heat up and cools down stages. The measured conductivity (o)
of our film at the two different temperatures is ¢ = 5.38 S/m
(dielectric phase) and o = 3.77 x 10° S/m (conductor phase),
respectively.
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Fig. 9. Fabricated broadband on/off FSS filter with heater surrounding the
FSS (inset: microscopic image).

B. Filters Fabrication

Upon achieving a high quality VO, thin-film deposition with
710* change in resistivity, we proceeded to realize two recon-
figurable THz filters on a c-plane sapphire substrate. Standard
photolithography, thin-film deposition, and lift-off techniques
were used for fabricating on/off filter. The process is illustrated
in Fig. 8. The final fabricated structure is shown in Fig. 9. First,
the VO, thin film (80 nm thick) is deposited using dc sputtering
as mentioned in the previous section. Next the standard pho-
tolithography step with image-reversal AZ5214E photoresist is
used to pattern the periodic structure and heater. Then, a 200-
nm thick gold (Au) layer is deposited using e-beam evaporator
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to create FSS pattern
ml am Ew

(a) 0]
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A — —_ —_
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Fig. 10.  Steps used to fabricate the frequency reconfigurable stopband THz
filter: (a) sapphire substrate, (b) VOq sputtering deposition, (c) photoresist
spinning, (d) first photolithography for pattering VO1 legs, (e) VO3 etching,
(f) second photolithography to define FSS filter and heater structure, (g) Au
deposition, and (h) lift-off process.

(CHA Solution) followed by a lift-off step to achieve the final
structures.

Unlike the previous device, the frequency shifting stopband
filter requires patterned VO, film instead of a blank thin film.
Therefore, the following steps are followed: after the VO, de-
position, the film is patterned using photolithography by S1813
positive photoresist. VOs film is then etched for 5 min in hy-
drogen peroxide (30% by weight) solution. After photoresist
removal, a second lithography step is performed using image-
reversal AZ5214E photoresist. This step gives the patterned
VOg as depicted in Fig. 10. Then the 200-nm thick gold layer
is deposited using e-beam evaporator. Finally, the pattern is
achieved by a lift-off step (see Fig. 10). The frequency recon-
figurable stopband filter is fabricated and shown in Fig. 11.

IV. MEASUREMENTS AND VALIDATION

The transmission of the fabricated THz filters was measured
using a time-domain spectroscopy (TPS 3000 system, Teraview,
Ltd.) at normal incidence (6 = 0°). The schematics of the THz
time-domain spectrometer (THz-TDS) in transmission mode is
illustrated in Fig. 12(a) [8]. Using this setup, the broadband
THz pulses were generated for the FSS filter excitation using a
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Fig. 11. Fabricated frequency reconfigurable stopband filter with heater sur-
rounding the FSS (inset: microscopic image).
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Fig. 12. (a) Schematics of THz time-domain spectrometer in transmission
mode and (b) measurement setup.

photoconductive antenna. This antenna was excited via a pulsed
near-infrared laser, which covers a frequency range of 0.06-3
THz. The incident THz excitation from the photoconductive
antenna is focused through a curved reflector before incidence
on the FSS sample. Transmission through the sample is then
measured using the THz-TDS transmission gantry. During the
process, voltage is applied to the heater with the range of 0—
20 V. Power to the heater is controlled by varying the voltage to
achieve two phases of VO,. An aluminum sample holder is also
used to help dissipating the heat. The overall measurement setup
is shown in Fig. 12(b). The heater reached 70 °C after 18 V is

Transmission

06 20

Frequency (THz) Voltage(V)

Fig. 13. Transmission of broadband on/off filter versus frequency (0.2-0.6
THz) for different voltages applied to the heater.
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Fig. 14.  Comparison of simulated and measured transmission response of the

broadband on/off THz filter.

applied within 30 s and cooled down to room temperature within
45 s with the help of aluminum sample holder.

A. Broadband ON/OFF Filter Measurement

The transmission response of the filter in Fig. 9 is plotted in
Fig. 13. This three-dimensional response gives the transmission
itself as a function of applied voltage to the heater and the fre-
quency of the excitation signal. It is shown that the transmission
peak is at 0.35 THz [at room temperature (24 °C)] and drops
nearly to 0.1 when voltage reaches 18 V at 70 °C.

Fig. 14 compares the measured and simulated (as in Fig. 1)
curves of the transmission response for the broadband on/off
THz filter. The agreement between the two curves is good but
most important, the on and off behaving of the filter as the VO,
temperature is at 24 and 90 °C is quite clear. The frequency range
of interest is from 0.1 to 0.6 THz. We note that the transmis-
sion peak shows high% of transmission (~83%) at 0.35 THz.
At 90 °C, there is some difference between measurement and
simulation results. This is most likely due to ideal conductivity
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Fig. 16.  Comparison of simulated and measured transmission response of the
frequency reconfigurable stopband THz filter at (a) 24 °C and (b) 90 °C.

used in the simulation and the actual material used in fabrica-
tion. In addition, the Fabry—Perot effect taking place within the
sapphire substrate could lower the filter performance. As the
temperature increases beyond the transition point (68 °C), the
transmission peak vanishes and overall transmission drops by
20 dB. This shows the performance of switch on and switch off

functionality of the filter at 0.35 THz. Please note that the off
state of this filter can be explained by a Fabry—Perot effect in
the sapphire substrate. In order to avoid the evanescent waves to
propagate through FSS structure, the thickness of the dielectric
substrate should be less than the wavelength A/20 [27]. How-
ever, due to the lack of availability of thinner sapphire substrate,
150-pm thick sapphire was used.

B. Frequency Reconfigurable Filter Measurement

The transmission responses of the reconfigurable stopband
filter as a function of the applied voltage to the heater is plotted
in Fig. 15. It is observed that the stopband is shifted downward
from 0.75 to 0.55 THz at 18 V. Fig. 16(a) shows the comparison
between measurement and simulation (as in Fig. 2) at 24 °C.
There is a small shift from 0.8 to 0.75 THz and the bandwidth
is broader. At 90 °C, the stopband peak is shifted to 0.55 from
0.6 THz. This difference between the measured and simulation
results can be attributed to the minor misalignment during the
fabrication processes and the undercut while etching the VO,
patterns. However, the measured responses still shows a large
shift (~0.2 THz) as the temperature increases above the transi-
tion temperature. This design can be considered as an experi-
mental demonstration for the frequency reconfigurable stopband
THz filter in the range of 0.5-0.9 THz.

V. CONCLUSION AND FUTURE WORK

We developed and measured the reconfigurable THz filters
using FSS and PCM: VO, integrated with heater. The goal was
for an excellent transmission of THz filter with reconfigurable
properties to improve THz applications’ selectivity. Two designs
are achieved here as broadband on/off THz filter and frequency
reconfigurable stopband THz filter. For on/off filter, the VO,
thin film is deposited between FSS pattern and substrate. The
peak frequency of this reconfigurable THz filter is at 0.35 THz
and the peak is suppressed when the temperature increases be-
yond the transition temperature (68 °C). For stopband filter, the
VO, thin film is patterned as part of the FSS structure. There is
a shift of frequency from 0.75 down to 0.55 THz as temperature
increased above 68 °C. Further, the integrated heater is first in-
troduced here to provide practical realization for reconfigured
filter with high performance. Such filters are great candidates for
next-generation THz sensing, spectroscopy, and imaging appli-
cations. Although only a specified range of frequency and only
VO, were considered here, improved filter designs with differ-
ent design geometries, other selected materials, and substrates
could allow for different frequency ranges and higher filter per-
formances. In addition, the heater can be further optimized to
provide faster speed and better temperature control.
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