CONTENTS

xv

1	Introduction	1
1.1	Microwave Frequencies	1
1.2	Microwave Applications	3
1.3	Microwave Circuit Elements and Analysis	6
	References	16
2	Electromagnetic Theory	17
2.1	Maxwell's Equations	17
2.2	Constitutive Relations	23
2.3	Static Fields	28
2.4	Wave Equation	31
2.5	Energy and Power	33
2.6	Boundary Conditions	39
2.7	Plane Waves	44
	Plane Waves in Free Space	44
2.8	Reflection from a Dielectric Interface	49
	1. Parallel Polarization	49
	2. Perpendicular Polarization	52
2.9	Reflection from a Conducting Plane	53
2.10	Potential Theory	56
*2.11	Derivation of Solution for Vector Potential	59
2.12	Lorentz Reciprocity Theorem	62
	Problems	65
	References	70
3	Transmission Lines and Waveguides	71
	Part 1 Wayes on Transmission Lines	72
31	Wayes on An Ideal Transmission Line	72
32	Terminated Transmission Line: Resistive Load	78

Preface

VIII CONTENTS

3.3	Capacitive Termination	82
3.4	Steady-State Sinusoidal Waves	85
3.5	Waves on a Lossy Transmission Line	86
	Loss-Free Transmission Line	88
	Low-Loss Transmission Line	89
3.6	Terminated Transmission Line: Sinusoidal Waves	89
	Terminated Lossy Line	94
	Part 2 Field Analysis of Transmission Lines	96
3.7	Classification of Wave Solutions	96
	TEM Waves	99
	TE Waves	100
	TM Waves	102
3.8	Transmission Lines (Field Analysis)	104
	Lossless Transmission Line	104
	Transmission Line with Small Losses	108
3.9	Transmission-Line Parameters	112
3.10	Inhomogeneously Filled Parallel-Plate Transmission Line	117
	Low-Frequency Solution	121
	High-Frequency Solution	123
3.11	Planar Transmission Lines	125
3.12	Microstrip Transmission Line	130
	Low-Frequency Solutions	136
	Microstrip Attenuation	153
	High-Frequency Properties of Microstrip Lines	158
	Attenuation	163
3.13	Coupled Microstrip Lines	164
3.14	Strip Transmission Lines	170
	Attenuation	171
3.15	Coupled Strip Lines	173
3.16	Coplanar Transmission Lines	175
	Attenuation	178
	High-Frequency Dispersion	180
	Part 3 Rectangular and Circular Waveguides	180
3.17	Rectangular Waveguide	181
	TE Waves	182
	Power	186
	Attenuation	187
	Dominant TE ₁₀ Mode	190
	TM Modes	193
3.18	Circular Waveguides	194
	TM Modes	194
	TE Modes	196
3.19	Wave Velocities	198
	Phase Velocity	199
	Group Velocity	200
	Energy-Flow Velocity	204
3.20	Ridge Waveguide	205
3.21	Fin Line	208
	Problems	210
	References	219

4	Circuit Theory for Waveguiding Systems	220
11	Equivalent Valtages and Currents	991
4.1	Impedance Description of Wayaguida Elements and Circuits	221
4.4	One-Port Circuits	224
	Lossless One-Port Termination	224
+13	Foster's Reactance Theorem	220
+4.0 +4.4	Even and Odd Properties of Z	232
45	N-Port Circuits	232
4.0	Proof of Symmetry for the Impedance Matrix	235
	Proof of Imaginary Nature of [Z] for a Lossless Junction	236
	Normalized Impedance and Admittance Matrices	237
4.6	Two-Port Junctions	238
110	Some Equivalent Two-Port Circuits	245
4.7	Scattering-Matrix Formulation	248
	Symmetry of Scattering Matrix	250
	Scattering Matrix for a Lossless Junction	251
4.8	Scattering Matrix for a Two-Port Junction	254
4.9	Transmission-Matrix Representation	257
	Voltage-Current Transmission Matrix	257
	Wave-Amplitude Transmission Matrix	259
* 4.10	Signal Flow Graphs	260
* 4.11	Generalized Scattering Matrix for Power Waves	268
* 4.12	Excitation of Waveguides	276
	Probe Coupling in a Rectangular Waveguide	276
	Radiation from Linear Current Elements	281
	Radiation from Current Loops	283
* 4.13	Waveguide Coupling by Apertures	284
	Aperture in a Transverse Wall	286
	Aperture in Broad Wall of a Waveguide	290
	Problems	294
	Keierences	302
5	Impedance Transformation	
	and Matching	303
5.1	Smith Chart	304
5.2	Impedance Matching with Reactive Elements	308
	Single-Stub Matching	309
5.3	Double-Stub Matching Network	312
5.4	Triple-Stub Tuner	317
5.5	Impedance Matching with Lumped Elements	319
	Circuit Q and Bandwidth	325
5.6	Design of Complex Impedance Terminations	330
5.7	Invariant Property of Impedance Mismatch Factor	334
5.8	Waveguide Reactive Elements	339
	Shunt Inductive Elements	340
	Shunt Capacitive Elements	341
	waveguide Stub Tuners	342

X CONTENTS

5.9	Quarter-Wave Transformers	343
5.10	Theory of Small Reflections	347
5.11	Approximate Theory for Multisection Quarter-Wave	
	Transformers	348
5.12	Binomial Transformer	350
5.13	Chebyshev Transformer	352
* 5.14	Chebyshev Transformer (Exact Results)	356
5.15	Filter Design Based on Quarter-Wave-Transformer	
	Prototype Circuit	360
	Junction Capacitance and Length Compensation	365
5.16	Tapered Transmission Lines	370
	Exponential Taper	372
	Taper with Triangular Distribution	372
* 5.17	Synthesis of Transmission-Line Tapers	373
* 5.18	Chebyshev Taper	380
* 5.19	Exact Equation for the Reflection Coefficient	383
	Problems	387
	References	393
6	Passive Microwave Devices	394
6.1	Terminations	394
	Variable Short Circuit	395
6.2	Attenuators	397
	Electronically Controlled Attenuators	400
6.3	Phase Shifters	404
	Rotary Phase Shifter	404
	Electronically Controlled Phase Shifters	409
6.4	Directional Couplers	413
	Directional-Coupler Designs	416
	Coupled-Line Directional Couplers	427
	Branch-Line Directional Coupler	432
~ -	Lange Directional Coupler	434
6.5	Hybrid Junctions	430
		400
	Hybrid King	407
0.0	Power Dividers	442
0.1	Enclow Pototion	400
0.0 6 0	Microwaya Devices Employing Faraday Rotation	464
0.9	Gurator	464
	Isolator	466
	Resonance Isolator	467
6 10	Circulators	468
0.10	Three-Port Circulator	471
	Field Analysis of Three-Port Circulator	473
6.11	Other Ferrite Devices	476
0.11	Problems	476
	References	479

481
485
485
487
488
490
496
500
500
504
508
517
517
523
525
527
528
529
531
531
532
533
534
536
538
541
545
548
550
551
557
001
559
560
563
564
566
569
571
577

- 583*****8.11 Some General Properties of a Helix 5858.12 Introduction to Microwave Filters 587
- 8.13 Image-Parameter Method of Filter Design

XII CONTENTS

8.14	Filter Design by Insertion-Loss Method	591
8.15	Specification of Power Loss Ratio	592
	Maximally Flat Filter Characteristic	593
	Chebyshev Filter	593
8.16	Some Low-Pass-Filter Designs	595
8.17	Frequency Transformations	598
	Frequency Expansion	599
	Low-Pass to High-Pass Transformation	599
	Low-Pass to Bandpass Transformation	600
	Period Bandpass Mapping	602
8.18	Impedance and Admittance Inverters	603
8.19	A Microstrip Half-Wave Filter	617
8.20	Microstrip Parallel Coupled Filter	626
8.21	Quarter-Wave-Coupled Cavity Filters	635
8.22	Direct-Coupled Cavity Filters	639
8.23	Other Types of Filters	642
	Problems	64Z
	Keierences	647
9	Microwave Tubes	648
9.1	Introduction	648
9.2	Electron Beams with dc Conditions	650
	Ion-Neutralized Beam	650
	Beam with Axially Confined Flow	651
	Brillouin Flow	652
9.3	Space-Charge Waves on Beams with Confined Flow	654
9.4	Space-Charge Waves on Unfocused Beams	661
9.5	Ac Power Relations	667
9.6	Velocity Modulation	670
9.7	Two-Cavity Klystron	678
	Excitation of a Cylindrical Cavity	679
•	Cavity Excitation by a Velocity-Modulated Beam	683
9.8	Keffex Klystron	680 600
9.9	Magnetron O Tune Treveling Wave Tube	690
9.10	M Type Traveling Wave Tube	692
9.11 Q 19	Gyrotrons	701
3.12	Field-Particle Interaction in a Gyrotron	701
9 13	Other Types of Microwave Tubes	708
0.10	Problems	709
	References	712
10	Solid-State Amplifiers	719
IU I		713
10.1	Bipolar Transistors	716
10.0	Transistor Blasing	720
10.2	rield-Linect Transistors	721
	rei diasing	724

10.3	Circle-Mapping Properties of Bilinear Transformations	725
10.4	Microwave Amplifier Design Using S_{ij} Parameters	726
10.5	Amplifier Power Gain	728
	Derivation of Expressions for Gain	730
10.6	Amplifier Stability Criteria	735
	Conditionally Stable Devices	740
10.7	Constant Power-Gain Circles	744
	Properties of the Constant Gain Circles	746
	Stable Devices	746
	Unstable Devices	750
10.8	Basic Noise Theory	760
	Filtered Noise	762
	Noise in Active Devices	765
	Noisy Two-Port Networks	766
10.9	Low-Noise Amplifier Design	767
	Noise Figure	768
	Noise Figure for Cascaded Stages	770
	Constant Noise-Figure Circles	772
10.10	Constant Mismatch Circles	776
	Constant Input Mismatch Circle	778
	Output Impedance-Mismatch Circle	780
10.11	Microwave Amplifier Design	780
	Single-Stage Amplifier Design	781
	Design of Second Stage for a Two-Stage Amplifier	788
10.12	Other Aspects of Microwave Amplifier Design	793
	Problems	795
	References	798
11	Parametric Amplifiers	700
11	I arametric Ampiners	199
11.1	p-n Junction Diodes	800
11.2	Manley-Rowe Relations	804
11.3	Linearized Equations for Parametric Amplifiers	807
11.4	Parametric Up-Converter	809
11.5	Negative-Resistance Parametric Amplifier	814
11.6	Noise Properties of Parametric Amplifiers	821
	Problems	829
	Kelerences	630
12	Oscillators and Mixers	831
19.1	Gunn Oscillators	830
14.1	Gunn Oscillator Circuits	835
199	IMPATT Diodes	837
199	Transistor Oscillators	840
19 4	Three-Port Description of a Transistor	843
19.5	Oscillator Circuits	849
12.6	Oscillator Design	851
÷ u .0		201

XIV CONTENTS

12.7	Mixers	856
	Linear Mixer Operation	861
	Nonlinear Mixer Operation	862
12.8	Mixer Noise Figure	864
12.9	Balanced Mixers	865
12.10	Other Types of Mixers	868
12.11	Mixer Analysis Using Harmonic Balancing	869
	Problems	873
	References	875

Appendixes

Ι	Useful Relations from Vector Analysis	876
I.1	Vector Algebra	876
I.2	Vector Operations in Common Coordinate Systems	877
	Rectangular Coordinates	877
	Cylindrical Coordinates	877
	Spherical Coordinates	878
L3	Vector Identities	879
I.4	Green's Identities	880
Π	Bessel Functions	881
II 1	Ordinary Bessel Functions	881
II 2	Modified Bessel Functions	883
11.2	References	885
III	Conformal Mapping Techniques	886
III 1	Conformal Manning	886
III 2	Elliptic Sine Function	889
III 3	Canacitance between Two Parallel Strips	892
III 4	Strin Transmission Line	896
IIL5	Conductor Loss	898
III.6	Conductor Losses for a Microstrip Transmission Line	903
III.7	Attenuation for a Coplanar Line	905
IV	Physical Constants and Other Data	911
IV 1	Physical Constants	911
TV 9	Conductivities of Materials	912
IV.2	Dielectric Constants of Materials	912
TV A	Skin Donth in Conner	019
1 4 .4	Druit Debui ui Cobber	512
	Index	913