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Foreword

It has often been said that a good teacher must have a number of attributes, among
which are true expertise in the subject to be taught, and, just as important, the
ability to put the subject across to the students, regardless of its complexity. We
have all suffered under instructors who got straight A’s as students, but who
never understood how their own students did not do as well because the material
was presented as if it should be obvious. Professor Ben Munk has no problems
in either regard.

In this book, Ben treats a number of subjects related to antennas and both
their intended usage as transmission or reception devices, as well as the important
(these days) radar cross section (RCS) that they can contribute. A constant theme
behind the presented results is how often investigators approach the problem
with no apparent understanding of the real-world factors that bear heavily on
the practicality and/or quality of the result. He takes issue with those who have
become so enchanted with high-powered computers that they simply feed the
machine some wonderful equations and sit back while it massages these and
“optimizes” a result. Sad to say, Ben has been able to document all too many
examples to prove his point.

All this is not intended in any way to say that powerful computers are useless.
Far from it. Without the use of such machines, much of the work described herein
could not have been done in a lifetime, but the approach has to be controlled by
investigators who understand the physics and electromagnetic realities that make
a solution truly optimal and practical.

Throughout this book, Ben makes excellent use of the work he described in his
first book, Frequency Selective Surfaces, in which he demonstrated how what he
called the “Periodic Moment Method” could be used to obtain excellent results
for problems previously hampered by “micro” calculation methods. His array

Xvii



XViii FOREWORD

theory approach, combined appropriately with the detailed “method of moments,”
produced successful solutions to a number of critical problems.

Here he further applies this approach and gives many examples of problems
solved by himself and his graduate associates, with the goal of teaching by
practical example. This is done by walking the reader, case by case, through
the basic technology that applies, then to a logical solution. He then gives hard
results to validate what was done, and then, to quickly bring the reader up to
speed, he provides a problem or two for solution without further guidance.

Throughout all this, Ben uses his wonderful sense of humor to make various
points, which goes a long way in making this book anything but tedious. Say-
ing that about a book on heavy electromagnetic theory and design is certainly
a far cry from the usual. His sections on “Common Misconceptions” are his
way of highlighting how often “results” are developed and publicized without
the necessary understanding of the basic rules of the game. He calls a spade a
spade, for sure, and there may well be some who, though unnamed, might feel
a twinge after reading these sections. All in all, this is an excellent book that
will certainly benefit any serious investigator in the technology areas it discusses.
Highly recommended!

WiLLIAM F. BAHRET

Mr. W. Bahret was with the United States Air Force but is now retired. From
the early 1950s he sponsored numerous projects concerning radar cross section
of airborne platforms—in particular, antennas and absorbers. Under his leader-
ship grew many of the concepts used extensively today—for example, the metallic
radome. In fact he is considered by many to be the father of stealth technology.

BEN MuNk

Wow!! The former student (now a professor emeritus) has succeeded in advanc-
ing the former teacher’s (an even older professor emeritus) knowledge of array
design tremendously.

The information contained in this book is going to change the way that large,
broadbanded arrays are designed. This also leads to new insights in the area of
antenna scattering. I strongly recommend it to the designers of such arrays. The
concept of starting a finite array design from an infinite array is a remarkable one.

A simple example of why I make this comment comes to mind. I was reading
the papers in the December 2002 IEEE Magazine which discuss the transmission
of power to earth from space. Several problems with interference created by
reradiation of energy at harmonic frequencies were discussed. I could see potential
cures simply from scanning the initial chapters. I would also be interested in
applying these concepts to my current research namely, time-domain ground-
penetrating radar (GPR). Some neat antennas may become practical.

Those who have read Ben’s first book, Frequency Selective Surfaces, Theory
and Design, will recall that I also wrote the Foreword to it. I was his teacher,



FOREWORD Xix

project supervisor, and later co-worker on much of that material. In reading it, I
would turn pages and simply agree with many of the concepts.

At this time I have only scanned some of the chapters of the present book.
For what I have seen thus far, I would scan a part of it and simply say, “Wow.”
The reader should understand that there were points where I would have said,
“Bet a Coke” (Ben and I used to bet a Coke every time we disagreed. Neither of
us ever paid up.). These points are provocative to those readers with an interest
in antenna scattering and should make those readers think carefully about them
but most of them are resolved when one recalls that the emphasis of this book
is on arrays.

This book is a must for anyone involved in the design of large arrays. I fully
intend to read it very carefully after it is published.

Finally, I would observe that Ben’s comments about the review of journal
papers are borne out of frustration. While Ben has worked in these areas through-
out his career, most of his work was at that time classified. Thus when a paper
in these general areas was published, he saw various flaws because of his expe-
rience but he could not comment. Neither the paper’s author nor the reviewers,
not having Ben’s unique background, would see these flaws. The problem is in
reality created by the necessity of security. This same factor has led to the very
interesting sections he has titled “Common Misconceptions.”

Columbus, Ohio LEON PETERS, JRr.

Leon Peters, Jr., was a professor at the Ohio State University but is now retired.
From the early 1960s he worked on, among many other things, RCS problems
involving antennas and absorbers. In fact, he became my supervisor when I joined
the group in the mid-1960s.

BEN MuNK



Preface

Why did I write this book?

The approach to engineering design has changed considerably over the last
decades.

Earlier, it was of utmost importance to first gain insight into the physics of the
problem. You would then try to express the problem in mathematical form. The
beauty here was, of course, that it then often was quite simple to determine the
location of the extreme values such as the maxima and minima as well as nulls
and asymptotic behavior. You would then, in many cases, be able to observe
which parameters were pertinent to your problem and in particular which were
not. It was then followed by actual calculations and eventually by a meaningful
parametric study that took into account what was already observed earlier.

The problem with this approach was, of course, that it required engineers and
scientists with considerable insight and extensive training (I deliberately did not
say experience, although it helps). However, not everyone that started down this
road would finish and not without a liberal dose of humiliation.

It is therefore quite understandable that when the purely numerical approaches
appeared on the scene, they soon became quite popular. Most importantly, only a
minimum of physical insight was required (or so it was thought). The computers
would be so fast that they would be able to calculate all the pertinent cases.
These would then be sorted out by using a more or less sophisticated optimiza-
tion scheme, and the results would be presented on a silver platter completely
untouched by the human mind.

It would be incorrect to state that the numerical approach has failed. It has in
many cases produced remarkable results. However, the author is keenly aware of
several cases that have been the subject of intense investigation for years and still
have not produced a satisfactory solution, although some do exist—most often
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xxii PREFACE

because the computer has been directed to incorporate all kinds of parameters that
are alien to this particular problem. Or lack of physical insight has prevented the
operator from obtaining a meaningful parametric study—for example, in cases
where a solution does not exist in the parametric space considered.

The author has watched this development with considerable concern for sev-
eral years. One of his colleagues stated recently that a numerical solution to
a somewhat complex problem of his could only be used to check out specific
designs. An actual optimization was not possible because of the excessive com-
puter time involved.

That almost sounds like an echo of other similar statements coming from the
numerical camp.

A partial remedy for this calamity would be, of course, to give the students a
better physical understanding. However, a fundamental problem here is that many
professors today are themselves lacking in that discipline. The emphasis in the
education of the younger generation is simply to write a computer program, run
it, and call themselves engineers! The result is that many educators and students
today simply are unaware of the most basic fundamentals in electromagnetics.
Many of these shortcomings have been exposed at the end of each chapter of
this book, in a section titled “Common Misconceptions.” Others are so blatantly
naive that I am embarrassed to even discuss them. What is particularly disturbing
is the fact that many pursue these erroneous ideas and tales for no other reason
than when “all the others do it, it must be OK!”

Neither this book nor my earlier one, Frequency Selective Surfaces, Theory
and Design, make any claims to having the answers to all problems. However,
there are strong signals from the readers out there that they more and more
appreciate the analytic approach based on physical understanding followed up
by a mathematical analysis. It is hoped that this second book will be appreciated
as well.

The author shared this preface with some of his friends in the computational
camp. All basically agreed with his philosophy, although one of them found the
language a bit harsh!

However, another informed him before reading this preface that design by
optimization has lately taken a back seat as far as he was concerned. Today,
he said, there is a trend toward understanding the underlying mathematics and
physics of the problem.

Welcome to the camp of real engineering. As they say, “there is greater joy
in Heaven over one sinner who makes penance than over ninety-nine just ones.”

Columbus, Ohio BEN MuNk
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Symbols and Definitions

X

(el

z
e=[pxrlxr
. :_J_ﬁj_e +|| ﬁue
E\n(R)

horizontal distance between column ¢ and point
of observation R

wire radius of elements

side length of square elements

vector potential for double infinite array of
Hertzian elements

vector potential of Hertzian elements located in
column ¢

vector potential of a single Hertzian element
located in column ¢ and row m

location of the front face of dielectric slab m in
dipole case

location of the back face of dielectric slab m in
dipole case

equivalent shunt capacitance from the orthogonal
elements in a CA absorber

diameter of circular plate element

thickness of dielectric slab in dipole case

determinant of admittance matrix for N
slot arrays

interelement spacings in the X direction

interelement spacings in the Z direction

field vector for infinite array of Hertzian elements

electric field at R in medium m

XXV



XXVi SYMBOLS AND DEFINITIONS

E, (R)
—=(R)

A ﬁD X T
ANy = ~
np Xr
Mm =1L 0m Xr

n,ng,ny, N, ...

p
ﬁ(p)
ﬁp,n

pw®»

Pt

incident electric field at R in medium m

reflected electric field of R in medium m

frequency

onset frequency of grating lobe

Fourier transform of f(¢), not necessarily a func-
tion of time

magnetic field of R in medium m

incident magnetic field at R in medium m

reflected magnetic field at R in medium m

Hankels function of the second kind, order n and
argument x

current along element in column ¢ and row m

indices for the spectrum of plane, inhomogeneous
waves from an infinite array

distance from a reference point to an arbitrary
point on the element

total element length

infinitesimal element length

element length of Hertzian dipoles

magnetic current density

total magnetic current in slots

unit vector orthogonal to dielectric interface
pointing into the dielectric medium in question

unit vector(s) orthogonal to the planes of inci-
dence or reradiation in medium m

unit vector(s) parallel to the planes of incidence
or reradiation in medium m

integers

orientation vector for elements

orientation vector for element section p

orientation vector for element section p in array
n

scattering pattern function associated with ele-
ment section p

transmitting pattern function associated with ele-
ment section p

scattering pattern function associated with ele-
ment section p in medium m

orthogonal and parallel pattern components of
scattering pattern in medium m

transmitting pattern function associated with ele-
ment section p in medium m



L PP

I

— I;(p)
Py

P(P)t

ﬁ Nt v

q, m
Py = Xry £ yry +2r,

I'm+
= Xtpx £ Yy + 2z

5 \2
rp=,/1— sz+n5
z

SYMBOLS AND DEFINITIONS XXVii

orthogonal and parallel pattern components of
transmitting pattern in medium m

polynomial for a bandpass filter comprised of n
slot arrays

the position of a single element in column ¢ and
row m

direction vectors of the plane wave spectrum
from an infinite array

direction vectors in medium m of the plane wave
spectrum from an infinite array

the p component of 7y

direction of incident field

direction of incident field in medium m

variable used in Poisson’s sum formula

orthogonal and parallel transformation functions
for single dielectric slab of thickness d,,

orthogonal and parallel transformation function
for the E field in a single dielectric slab of
thickness d,,

orthogonal and parallel transformation function
for the H field in a single dielectric slab of
thickness d,,

orthogonal and parallel generalized transforma-
tion function when going from one dielectric
slab of thickness d,, to another of thickness d,,,,
both of which are located in a general strati-
fied medium

transmission coefficient at the roots Y4, etc.

induced voltage in an external element with ref-

erence point r" caused by all the currents
from an array with reference element at R

induced voltage in an external element with ref-
erence point ﬁ(ll) caused by a direct wave only
from the entire array

induced voltage in an external element with ref-
erence point Em caused by double bounded
modes ending in the + direction

induced voltage in an external element with ref-
erence point E(l/) caused by a single bounded
mode ending up in the + direction

dipole or slot width



XXViii SYMBOLS AND DEFINITIONS

Yie, Your, ...

Yu

orthogonal and parallel components for the Wron-
skian for a single dielectric slab of thick-
ness d,,

orthogonal and parallel components for the effec-
tive Wronskian for a single dielectric slab of
thickness d,, and located in a general strati-
fied medium

intrinsic admittance

roots of polynomial for bandpass filter

scan admittance as seen at the terminals of an
element in the array

load admittance at the terminals of the elements

intrinsic admittance of free space

intrinsic admittance of medium m
array mutual admittance between array 1 and 2
intrinsic impedance

the dependent variable as a function of the inde-
pendent variable z in a bilinear transformation

intrinsic impedance of free space

scan impedance as seen at the terminals of an
element in the array

load impedance at the terminals of the elements

intrinsic impedance of medium m

array mutual impedance between a reference ele-
ment in array n and double infinite array n’

column mutual impedance between a reference
element in column ¢ and an infinite line array
at ¢’

mutual impedance between reference element in
column g and element m in column g’

angle between plane of incidence and the
xy plane

propagation constant in medium .

total element length of Hertzian dipole

dielectric constant

effective dielectric constant of a thin dielectric
slab as it affects the resonant frequency

dielectric constant in medium m

relative dielectric constant in medium m

angle of incidence from broadside

angle of grating lobe direction from broadside

angle of incidence from broadside in medium m
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SYMBOLS AND DEFINITIONS XXix

orthogonal and parallel Fresnel reflection coeffi-
cient for the E field when incidence is from
media m to m + 1

orthogonal and parallel Fresnel reflection coeffi-
cient for the H field when incidence is from
media m to m + 1

orthogonal and parallel effective reflection coef-
ficient for the E field when incidence is form
media m to m + 1

orthogonal and parallel effective reflection coef-
ficient for the H field when incidence is from
media m to m + 1

wavelength in medium m

permeability in medium m

relative permeability in medium m

orthogonal and parallel Fresnel transmission
coefficient for the E field when incidence is
from media m to m + 1

orthogonal and parallel Fresnel transmission
coefficient for the H field when incidence is
from media m to m + 1

orthogonal and parallel effective transmission
coefficient for the E field when incidence is
from media m to m + 1

orthogonal and parallel effective transmission
coefficient for the H field when incidence is
from media m to m + 1

angular frequency

variables used in Poisson’s sum formula (not
angular frequencies)



